The Computational Structure of Spike Trains
نویسندگان
چکیده
Neurons perform computations, and convey the results of those computations through the statistical structure of their output spike trains. Here we present a practical method, grounded in the information-theoretic analysis of prediction, for inferring a minimal representation of that structure and for characterizing its complexity. Starting from spike trains, our approach finds their causal state models (CSMs), the minimal hidden Markov models or stochastic automata capable of generating statistically identical time series. We then use these CSMs to objectively quantify both the generalizable structure and the idiosyncratic randomness of the spike train. Specifically, we show that the expected algorithmic information content (the information needed to describe the spike train exactly) can be split into three parts describing (1) the time-invariant structure (complexity) of the minimal spike-generating process, which describes the spike train statistically; (2) the randomness (internal entropy rate) of the minimal spike-generating process; and (3) a residual pure noise term not described by the minimal spike-generating process. We use CSMs to approximate each of these quantities. The CSMs are inferred nonparametrically from the data, making only mild regularity assumptions, via the causal state splitting reconstruction algorithm. The methods presented here complement more traditional spike train analyses by describing not only spiking probability and spike train entropy, but also the complexity of a spike train's structure. We demonstrate our approach using both simulated spike trains and experimental data recorded in rat barrel cortex during vibrissa stimulation.
منابع مشابه
A Simple Algorithm for Averaging Spike Trains
Although spike trains are the principal channel of communication between neurons, a single stimulus will elicit different spike trains from trial to trial. This variability, in both spike timings and spike number can obscure the temporal structure of spike trains and often means that computations need to be run on numerous spike trains in order to extract features common across all the response...
متن کاملMeasuring spike train distance from multichannel spike trains data simulated by coupled escape rate model
Estimating the population activity patterns between two or more spike trains is a fundamental problem in studying neural coding in computational neuroscience. In recent years, there are many different methods proposed to build a framework to deal with these problems by using spike train metric. Here we suggest a kernel method for multichannel spike trains that can provide an opportunity to meas...
متن کامل. bi o - ph ] 2 2 O ct 2 00 8 TO WHICH EXTEND IS THE “ NEURAL CODE ” A METRIC ?
Here is proposed a review of the different choices to structure spike trains, using deterministic metrics. Temporal constraints observed in biological or computational spike trains are first taken into account The relation with existing neural codes (rate coding, rank coding, phase coding, ..) is then discussed. To which extend the “neural code” contained in spike trains is related to a metric ...
متن کاملTo which extend is the "neural code" a metric ?
Here is proposed a review of the different choices to structure spike trains, using deterministic metrics. Temporal constraints observed in biological or computational spike trains are first taken into account The relation with existing neural codes (rate coding, rank coding, phase coding, ..) is then discussed. To which extend the “neural code” contained in spike trains is related to a metric ...
متن کاملGeneration of Correlated Spike Trains
Neuronal spike trains display correlations at diverse timescales throughout the nervous system. The functional significance of these correlations is largely unknown, and computational investigations can help us understand their role. In order to generate correlated spike trains with given statistics, several case-specific methods have been described in the litterature. This letter presents two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2010